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ABSTRACT

In order to deter Ina the effe- -Ivan ss of multdimonsional

scaling (MDS) in recovering the dim n ionality of a set of

dichotomously-scored items, d ta were aimulated in one, two, and

three dimensi n: for a variety of cor-elations with the

underlying latent tr-it. Similarity matrices were const u ted

from these data vsing. three margin-sensitive. and three marain-

.ree coefficients and used as input to MDS. Str (Si), Si by

dimensi n plots, and plots of the scaled items were examined to

determine the effect of varying the magnitude and pattern of

correlations. The results sugg sted that items witi simi

patterns of correlati n- tend to cluster ogather, that distance

from the center of a cluster is a function of the amount -I

random error in the item, and that as the number of latent traits

underlying th- data increases, the djnenaianelty of the

representational space increases. Cluster analysis uaing MDS

coordinate uggested to isolate homogeneous sets of items,

whereas consideration of the Si coefficient i- recommended to

determine the number of latent traits in the data.



Determining what a set of items really measures remains a problem
in educational psychology today 3ust as it was fifty years ago. The
problem is that differing methodologies for examining the structure of
an item set may yield different results, because their aasumptions and
techniques differ. This isnot necesaarily a drawback since this may
capture the richness of the data. The purpose- of this-paper is to
examine an alternative approach to determining the structure of a
of items using a combination of multidimensional scaling and cluster
analysis.

Investigationa into the atructure of a set of items frequently
invo --ef one or more of three questions: whether the items are pervaded
by A single underlying trait; how many traits pervade the data if the
items are not unidimensional and which items are related to which
traits; or which items are sufficiently similar that they could be said
to constitute a unidimensional set of items. Assessing sets of item
for unidimenaionality or forming unidimensional sets of items has
become increasingly important since the development and implementation
of item response theory (IRT) because most scaling procedures currently
require local independence and unidimensionality. No definitive
methodology has yet been advanced for testing for unidimensionality and
Lord (leata) has pointed out the need for such a teat. To the extent
that the assumptions of the IRT mode a are not met,.param ter estimates
will be inaccurate.

Multidimensional IRT models have been proposed and/or investigated
by a number of researchers including Bock and Aitkin (1981) and
McKinley and Reckon. (1982a0 1982b, 1983). However, in order to
estimate parameters of such models, it is necessary to know how many
latent traita underlie the data. Thus, techniques for determining the
number of dimensions underlying the data are necessary for multivariate
as well 41% univariate models. Classical approaches to test theory have
required assessment of dimena onality to confirm the appropriateness of
providing a single tee_ score for a subset of items. Content validity
atudies have required that the test developer determine whether items
which are assumed to share a common trait do, in fact, share the same
trait. Thus, while the problems of dimensionality assessment have
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received much attention in recent years. the need for techniques to

permit determining what a set of items meaaures is not new and is not

solely related to IRT.

Linear Tecnn4dues

Classical principal components (PCA) and factor analysis (Gnanader-

sikan, 1977) have frequently been used to determine the underlying

structure of the data. In the PCA model, individual responses are

assumed to lie in a'space whose axes (not necessarily orthogonal)

forlMed by the, a items. The goal of PCA is to form orthogonal linear

combinations of the items such that each linear combination accounts

for a maximum amount of the residual variance left unexplained by

previous linear combination*... The first principal component i

essentially a least-squares regression of a latent trait on the item

responsea; it. accounts for more variance than any other poasible

cembination of itema. By successively extracting linear combinationa

Which maximally- account for residual_ variance, orthogonal 4X00 are-

formed. If the matrix of interitem correlations is less than full r nk

or if it can be determined that only the first k (< 0 principal

components are needed to account for-a sufficient proportion of the

variance, amspaceof smaller dimensionality is considered sufficient t-

contain the structure represented by the original data. The principal

components which constitute the axes of the solution may be interpreted

aa- representing unseen factors underlying the data. If a aingle

p:(incipal component appears to account for a sufficient portion of the

variance, then theset of_items is said to be unidimensional.

In the factor analytical model, each observed variable i_ assumed

to be comprised of a weighted linear combination of latent (i.e.,

unmeasurable) variables called common factors which account for the

common variance among the observed variables as well as a unique latent

variable (called the specific factor) which accounts for the variance

unexplained by the common factors. In this model, the observed

reaponse is regressed on the latent responses. The PCA and factor

analysis models are very similar in their.approaches to the reduction
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of the dim nsionality of the orig n 1 data space end will be regarded
aa eaceritially the same here.

Although factor analytical techniques would appear to be ideally
suited for determining dimensionality, several problems occur in their
uae. First, there is no set criterion for determining how many factora
or principal components to extract in a given analysis. Secondly,
factor analysis requires the specific assumption that the observed
variables represent linear combinations of the latent variables. Thia
presents problems for dichotomized variables. If a factor analysis is
conducted on a matrix of phi correlation coefficients (which implicitly
assume that the distributions underlying the variables are true dichot-

omiem), the model is misspecified since the regression of a binary
variable on a continuous variable is not linear (McDonald and Ahlawat,
1974; Mislevy, 1986). Since the range of the values of phi

coefficients are affected by the pairwise distributions of the means of
the binary variables (i.e., the classical item difficulties), the

Agnitude of the phi coefficient la affected by the item difficulty as
well as the strength of the relationshipa among the variables. As a
result, extraneous factors appear which are related to the difficultiea
of the items and not to any other source of common variance among the
items. This clouds the issue of the true dimenalonality of the item
set.

One potenti 1 solution to the problems listed above is to factor
analyze a matrix of tetrachoric correlation coefficients, which assume
that bivariate normal distributions underly the pairwise diatributions
of dichotomized responses. While this solves the preblem of nonlinear
regressions, it brings about other problems. First, if the assumption
of bivariate normality la not met, the tetrachoric correlationa will
not reflect the true relationships among the variables. Second,

tetrachoric correlation coefficients are not directly estimable.

Simple approximation formulas may be found in many texts (see, e.g.,
Lord and Novick, 1968), but these are accurate only in the neighborhood
of r 0.5. More complex estimation procedures using Gauas-Hermite

quadrature or Newton-Raphaon iterations have been suggested by

Castellan (1966), Kirk (1973), Divgi (1979), and others. While these
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techniques improve the accuracy of the computations, they can become

unstable when one or m-re.cell proportibne of the psirwise item

responae table is extremely small. Third, tetrachoric correlation

coefficients are inappropriate in Cases where guessing occurs since the

probability of a correct response is influenced not only by latent

bility, but chance factors as well, resulting in spurioua guessing

factors (Carroll, 1945). While the correlations can h4 corrected for

guessing, other research (Reckase, 1981) has shown that over- or under-

cOrreicting yields undesirable results. Other problems include large

standard errors (requiring the use of very large samples to-achieve

atability) and the potential for negative eigenvalues (an undesirable

feature when eigenvalues are interpreted as amount of variance

accounted for).

Recent developments in factor amalyais have included the u 1-

information faXilralm likelihood (ML) approach (Bock and Aitkin, 1981;

Sock, Gibbons, and Muraki, 1985) and the generalized least squares

approach of Mut:16n (1978). These techniques are=capable of dealing
with dichotomized data and Provide a statistic for model fit which is

asymptotically di.stributed as chi-square. However, the statisticel
test is based on distributional assumptions which may be too

restric ive. for the variables. Furthermore, for testa of moderat

size, very large samples are required to insure the.accuracy of the
t

asymptotic approximation. In addition, restrictions are placed on the
number of items which may be factor analyzed (according to Mislevy

(1986), 25 is an upper limit for the GLS procedure) or the number of
factors.in the solution 1-3 for tests with 60 items in the ML
teeinique).

From the above r1jgcuaion, it appears that, although conventional

factor analysis and OCA are used to investigate the structure of sets
= of items, the techniques are not without problems when diqhotomized
data are analyzed. Other procedures for inveatigating data structure
are necessary.
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Mm dlsensional_AmIlma
All the techniques described above are based on linear models.

whictethe responses to the items are modeled by a weighted sum of
latent variables. In contrast! multidimensional'scaling (MDS) models
may be described es distance models. The fundamental task of MDS is to
recover the underlying structure of set of data points given the
interpoint distances' which are aosumed to be represented by a matrix
of exprimentally determined proximity measures 6i3. In MDS, neither
the coordinates of the objects being scaled nor the correct number of
dimensions (i.e., the correct number of coordinate axes) is known.
Proxlmities may bemeasuree of- almumitx or dAzaimilaritv. In the
ceee under consideration here, 6i3 is a measure of the similarity of
items i and 3, for exemplar, e correlation coefficient.

For a representational space in k dimensiona, a vector x is
obtained for each item which gives its (unknown) coordinate in the k-
dimensional space. Then the distance of ob3ect i from 3 in the space
may be given by the Euclidean distance:

I
2 .1/2- x3k1

The Euclidean distance, unlike some other distance measures, is
invariant under orthogonal 4X1S translations.

In foineral, di3 will not equal 61.3 because of error in the dat- or
because k is leas than the true number of dimensions in the space of
the data. In non etric MDS, the coordinates of all xik are obtained
sub3ect to a monotonicity constraint, i.e. 6i3 < 6i,30 implies that
di3 < di,3,. In other words, the rank orders of the distances di3 are
essentially the same as the rank orders of the similarities 6i a much
less restrictive constraint than an equality constraint and in general,

representational spaces obtained in nonmetric MDS will be of lower
dimensionality than in metric MDS where the equality constraint holds.

To measure how closely the rank orders are preserved in the k-
dimensional MDS configurationp e procedure called monotone leaat

squares or monotone regression (Gnanadesikan, 1977) is carried out on
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the di3 to yield disparities ai, . Kruskal h-_ proposed a quan
which he calls the STRESS, Si, as a badness-of-fit measure:

(d d )2
ij

X d!
13

(2)

Note that the original 61.3 are only indirectly repr -ented in Si
through their effect an the rank orders of the,disparities. Variants
of this measure,have-been proposed by Kruskal (1964), Takane, Young,
and deLesuw (1977), and Guttman (1968).

While Si represents the fit,of the configuration in the k-

dimensional space, little is known about its distribution except that
Si decreases as k increases. Empirical resiilts led Kruskal to suggest
that values of .20, .10, .05, 025, and 0.0 represent poor, fair, good,
excellent, and perfect fits, respectively. Kruskal and Wish (1978)
have :suggested that a value of .15 for k = 1 suggests strongly that the
data are unidimensionel. Suggontions for choosing a representational
apace have included a scree-like technique examining plOts of Si vs. k
for elbows and selecting a value for, k where a sharp bend occurs.
Other possible techniques include comparing Si vs. k plata for similar-
ity to simulation results for data generated with known structure.

n- NDS with Dichotomous _D ta

Given that MDS is capable of recovering the structure in data
under a set of less restrictive conditions than, those of factor
analysis, it would appear to be a potential solution for the problem-

_of

dimensionality analysis with dichotomous data. While factor analysis
requires the use of correlation coefficients cr covariances, MDS only
requires that the similarity measures be ordered. Given the less
restrictive nature of the hypotheses in MDS and the problems
encountered to date in using factor analysis with dichotomous
variables, it is surprising that ao little research has been done on
the use'of MDS in this particular application. While studies have been
conducted using MDS on dichotomous data to determine the structure of
the data (/Carpi and Naertel 1984; Thomaa 1984; Koch 1983), the efforts
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these studies have been directed toward comparing results with
factor analyses on real data or in interpreting MDS results on real
data. The true dimensionalities of the data seta are unknown, the
studies cannot definitively establish the validity of MDS in
determining dimensionality.

T e Problem of Dimeng4Anality_Assessment

Determining the number of dimensions underlying the structure of
the data is more complex than simply determining which representational
space has a small enough value. of S. For example, a two-dimensional
plot may reveal a single curvilinear dimenaion (Gnanadesikan 1977).
Thus, the appropriate dimensionality may differ from thet suggested by
the Si coefficients. Alternative techniques to examining values of Si
have been proposed. One procedure is to conduct a cluster analysis on
the scaled items using an hierarchical clustering algorithm to reveal
the data structure. Thus, two distinct clusters in a single dimension
on an MDS plot might Indicate that two latent variables underlie the
data. Kruskal and Wish (1978) also suggested,combining closeness
information fro* the MDS plots with proximitiea information. This can
be done by connecting all data points in the plots whose proximities
exceed a certain threshold value. This technique is'especially useful
in revealing curvilinear atructure.

While Guttman (1965) recommended that these techniques be used in
place of analysis of Si values, Kruskal and Wish (1978) have suggested
that the researcher use any necessary procedure to search for structure
in the data. They point out that the problem of dimensionality

assessment goea beyond a simple exasination of Si values Or searching
for clusters or regions in the data. They alao point out that the
problem of determining the correct number of dimensions to represent
the data (i.e., the number of axes required for the deta set) in an MDS
scaling is not equivalent to determining the true dimensionality of the
data set.

7
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Como- rison with _Linear Models

The models for .data representation described by PCA and factor

analysis are linear models. The MDS models are distance models for

which interpretation of the axes may differ. In the linear modela, n

data points which are p-dimensional vectors of responses to the m items

-e plotted in space. The data points are the responses of the

individuala to the items and the axes are the dimensions described by
the itema. A subspace in which the axes are linear combinations of the
items is obtained. These linear combinations constitute the latent

variables of the PCA. In MDS, a items are plotted in a space of some

unknown dimensionality and a parsimonious representation of that

dimensionality is sought.

The axes of the MDS configuration need not represent latent

variables and even if they d- they need not represent the same latent

variables as the PCA, Thus, MDS must be regarded as an alternative

approach to dimenaionality assessment rather than a more general

-version of PCA.

Monte Carlo Simulation. Studien

To date, only two atudies.have been found which compare

effectiveness of MDS with other techniques for recovering

dimensionality in artificially-generated, dichotomiged data of kno n

dimensionality and structure. Zwick (1986) successfully used MDS to

recover the dimensionality of a set of items with Guttman scaling. She

suggested that recovery of a, single dimension from such items be used

as a criterion before using any procedure for dimensionality
aasessment. However, she found that the results from an MDS analysis
of an actual data set were less clear.

Reckase (1981) simulated 24 data sets consisting of re ponses of

1000 individuals to 50 itema. Of these date este, 19 were

unidimcnsional, 3 had two factors, and 1 each had three and nine
factors. Item difficulties were normally or rectangularly distributed;

and guessing parameters were aaaumed constant for the data set or

normally distributed around expected values ranging from 0.0 to 0.75.

He compared the effectiveness of PCA and factor analysis (with
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orthogonal and oblique solutione DS, cluster analysis, and item
reeponse theory in recovering the true dimensionality of the data sets.
For the PCA and factor analysis invest_gations he used phi_
tetrachtivic, and corrected totrachoric correlation coefficiente. For
the MDS scalings he used 13 different similarity coefficients
(agreement, approval, eta, kappa, koPPap phi, MialMaX, tetrachoric
(correciled end uncorrected for guessing), Yule'e Q, Yule's V. gamma,
tau S, and Li3phart's index). MDS techniques were effective with
simulated data, but he felt that they failed to give an indication of
the dimensionality of a set of real items.

Several important findings emerged from the Reckase study. First,
the type of similarity coefficient used affected the magnitude of the
value of Si. "Margin-free" coefficients (those not affected by item
difficulty) such as the tetrachoric correlation and Yule's 0, in
general, had larger yalues for Si than "margin-sensitive" coefficients
such as phi and agreement. Second, the configuration of the items in
the MDS plots was affected by the type of similarity coefficient used.
Furthermore, gueseing tended to degrade the clarity of the plote
because it added random mrror to the similarity coefficients, affecting
their rank orderings. Difficult items were affected more than easy
items. Reckase reported results for two-dimeneional ecelingm only, so
it was not clear what effect additional dimensions would have on the
magnitudes of the Si values and the configmrations of the items in the
chosen representational space. Furthermore, since he was primarily
interested in the effects of guessing on the plots, he did not vary the
etrengths of the item-latent dimension relationship within a given
number of latent dimenmions.

The failure of the Reckase and Zwick studies to .achiev_

interpretable results for a MDS scaling of actual data when simulation
remults are so promising is puzzling. With this in mind this study
was undertaken to investigate passible reasona for these failures and
to determine the role of the strength of the relationship of the item
to the latent dimension in the scaling of items. Since MDS has been
ueed to interpret actual'data, additional simulations are needed to
determine the validity of this technique for interpreting data.

9
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Methodology

The research questions addressed in this study are, specifically,
1. Are methods of dimensionality assessment using MDS effective in

recovering the true dimensionality of sets of items which have been

dichotomously scored?

2. Are methods of dimensionality assessment using MDS influenced

by the number of dimensions underlying the sets of items, the magnitude

of t4e relationship of the items to the latent trait, the distributions

of these magnitudes across the latent traits, or the type of similarity
measurement used?

3. Does the type of similarity coeffici nt us d In MDS affect the

decisIon made in assessing dimensionality?

4. How do methods of dimensionality assessment using MDS compare

with PCA in terms of recovering the true dimensionality of a set of

dichotomously scored items? Do they eliminate the presenc of so-

called "difficulty" factors?

2g_te_Gener4tion

Data of known dimensionality were -bt-ined by simulating

individual responses to a set of hypothetical items under a

multidimensional extension of the two-parameter logistic model (2PL)

(Birnbaum, 1966):

PO( = 1 1 8 ) - (3)-ij 1 3
1.7a' (0 --1e -.3

This model is _ssential y the same as the multi 'ate two-parameter

logistic model proposed by Reokase and McKinley (1983) who modified the

model somewhat to cope vath problems of estimation.

In order to replicate test conditions approximately, item location

par -eters (bi) were generated using the standard normal distribution

(for data sets with one, two, or three dimensions) or the uniform U(-

3,3) distribution (for one-dimensional data sets). Item

discrimination parameters were specified at fixed va_ues or, in one

10
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case, generated from a uniform dis ribution ranging between .3 and
2.0). Table 1 presents details of the simulated item sets. When
ability can be assumed to have a standard normal distribution in the
population and there is no guessing, the relation between the item

discrimination parameter ai and the correlation coefficient with the

latent trait ( he factor loading given in Table 1) is given by

(4)

represents the correlation of the item with theLord, 0).

ent trait.

A vector of abilities ith length determined by the specified

dim ns onality of the item set) was generated for each individual.

Abilities were-assumed to be normally and independently distributed

across and within individuals, that ia, not only was the ability of one
subject unrelated to that of another subject, but also ability on one
dimension was assumed to have no relationship to ability on any other
dimension.

Dichotomized responses to the items were -immlated for each of

1000 individuals using 3) and comparing P(Xij = 1 10j) Pij) to a
U(001) random variable Rij. If Pij < Rjj, Xij = 1, otherwise Kij = 0.

Similarity matrices were then generated fromcross-classification

tables for responses to pairs of items. Six coefficients were selected
for this study, three margin-sensitive (agreement, phi, and kappa), and

three margin-free (M/Meae, Yule's Q, and the tetrachoric correlation).

It wan felt that these aix coefficients would give an adequate

representation of the types of results to be expected. Their formulas
are given in Reckase (1981).

Each s milarity matrix was scaled uaing nonmetric MDS analy in

one to five dimenaions. Euclidean distances were specified for

comparability with other analyses and because computational algorithms

are more efficient and more robust when the Euclidean metric is used.

The scaling was carried oUt using the Kruskal algorithm in the MDS

11
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pr cedure in the SYSTAT -tatistical package lkinson 1984) which is
available for the IBM PC.

For comparison with results which would be obtained using

traditional methodologies for dimensionality asseasment, PCA w

carried out using the FACTOR package in Systat. (This package does not

include a traditional factor analysis package, but does permit rotation

of a reduced set of principal componenta.) Analyses were carried out
on both phi and tetrachoric correlation matrices. The magnitudes of

the eigenvalues obtained in the analysis were examined to determine the

appropriate number of principal components to retain.

Values of Si and the Si by k plots vere examined to determine

whether they suggested an appropriate size for the representational
apace in MOS. Two- and higher-dimensional plots of scaled results were

examined for configurationa suggesting the dimensionality of the data.

Resu ta of Analyses

Choosing a Representational Space

The magnitude and the behavior of the Si coefficient were found
be a function of the number of dimensions in the data, the amount of

random error in the data, tne type of similarity coefficient used, and,

for margin-sensitive coefficients, the distribution of item

difficulties. Si increased aa the amount of random error in the data

increased (i.e., as the sum of the squared factor loadings decreased).

Furthermore, as the amount of error increased, the change in slope in

the graphs of Si vs. the number of dimensions also decreased. This

made determining the appropriate number of dimensions more. difficult.

Figure 1 preaenta the Si valuea obtained by acaling data sets 19-21 in

one through five dimensions using an input matrix of agreement
coefficients. These data sets are three-dimensional with similar

factor structure; however, the sum of the squared factor loadings are
.81, .25 and .09, respectively. The change in slope of the graph is

abrupt at a three-dimensional solution for data set 19, less abrupt for

data set 20, and difficult to determine for data set 21. The magnitude

12
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o riaes steadily across these data sets for a given

dimensionality. Figure 2 representa Si values obtained by scaling

matrices of tetrcchoric coefficients for the acme data set. A cle-r

difference appears between the graphs for data sets 19 and 20 and that
for data set 21. This graph waa somewhat unusual for two reasons. The

nagnitude of Si increased slightly with increasing dimensionality in

the representational space for data net 19. This effect was

encountered occasionally in situations where the magnitude of 51 was

low and was considered of no importance. Secondly, the magnitude for

Si was approximately the same for data set 19 as for data set 20. The

one clear difference is the lack of an elbow at a two-dimenaional

solution for data set 20. Conclusions regarding the number of

dimensions in the representational space be difficult to make for data
set 21. Furthermore, the number of d:Lmensions would differ according

to whether the agreement or the tetrechoric coefficient was being used.

For unidimensional data sets 1-9 a one-dimensional

representational space gave low values of Si E< .153 when margin--

sensitive coefficients were scaled. As the amount of random error in
the data increased, $ increased. For the margin-free coefficients 51
was very high .4-.5) for a one-dimensional solution. It tended to

drop off steadily with no a gn of an elbow. This precludes the use of
a criterion value such as .15 for determining the aPpropriate number of

dimensions in the representational apace when margin-free coefficients
are used. However, such a criterion might be useful iS margin-

aenaitive coefficients Were scaled.

For the two-dimensional data, an examin_tion of Si for margin-

sensitive coefficients suggested a two-dimensional representational

space. However, it was more difficult to determine the appropriate

dimeneionality for data sets with substantial random error (e.g., 12).

In these data sets, Si values were high and no elbow waa clear in the
graph. Margin-free coefficients generally had low values of Si for a

one-dimensional representational space, although the value, again, was

affected by the amount of random error. In data seta 15-18, the 51

coefficient behaved as if the data were unidimensional.

13
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The three-dimensional data yielded solutions which were similar

for the two-dimensional data except that one additional dimension was

necessary in the solution. This suggests that when a date set has k

latent traits, k dimensions are required for ft aling margin-sensitive

coefficients and (k-1) dimenaions are required for m rgin-free
coefficients.

Of the margin-sensitive aim 1 rity coefficients used, the

agreement coefficient had the. lowest Si values and was the least

aenaitive to random error. When coordinates were examined for ite

scaled using a matrix of agreement coefficients, it was clear that one

dimension in the representational space wee simply item difficulty.

While the kappa and. phi coefficients were also sensitive to item

difficulty, the effect was less strong, since the effect of item

difficulty on these coefficienta ia a restriction of range. While

was not difficult in most cases to determine an appropriate number of

dimensions in the representational space using the agreement

coefficient, it was considerably more difficult using the kappa and phi
coefficients. For unidimensional data, agreement coefficients ranged

between .02 (for data act 4) and .29 (data met 9).

Data sets with rectangularly distributed item difficulties tended

to have lower Si values than their normally distributed counterparts.

This is probably because the itema are uniformly distributed along the

scale of difficulty. As a result, they are more spread out, making

reversals in rank ordering less likely.

Although the tetrachoric correlation coefficient tended to yield

Si values which were similar to those for Yule'a CI, it occas onally

yielded much smaller values when factor loadings were high.

Examination of scale values and item plots indicated that a difficulty

dimension was preaent for the tetrachoric correlation. This was not an

artifact of the scaling procedure, since the same effect was noted when

PCA 44-,carried out on the matrix of tetrachoric correlations.

No simple recommendations can be made regarding choice of an

appropriate representational space from these results. When a sharp

elbow is present in the plot of Si by dimensions, a choice of 'the

appropriate number of dimensions is clear. If the initial level of
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streaa i_ low, a one-dimens nal represen-ational space is appropriate.
However, as will be seen from an examination of item plots, the

interpretation of.this apace differa somewhat between margin-sensitive
and margin-free coefficients. When no low value of stress is reached
for a reaaonable (as defined by the reaearcher) number of dimensiona,

item plots will have to be examined to determine wheth r they cast
additional light on the issue.

Reaults of Examinat' n of Eigenvalue%

PCA tended to yield good reaults with the simulated data. This

was expected, since the data were generated using a model for which PCA
ahould be max- mally effective. This might not be the case for date
with a nonlinear underlying model.

The magnitudea of the eigenvalues were affected by the number of

dimensions in the data, the amount of random error preaent in the data,

the difficulty level of the items, and, when an item loaded on multiple
factora, the discrepancies between those loadings. Except in the cases

data seta containing fewer factor atructures than factors (for

example, data sets 16-18), PCA yielded solutions with as many or more
large eigenvalues than factors. Spurious factors due to difficulty

were noted fer analyses of both phi and tetrachoric correlation coeffi-

cients; these were more likely to occur when correlations with the

latent factor were high. The tetrachoric matrices in such instances
tended to be non-Gramian and the eigenvalues representing systematic

effects were substantially higher than those obtained in analyzing the
corresponding matrix of phi coefficients. Figure 3 presents graphs of

eigenvaluea obtained in PCA of three-dimensional data sets 19-21 using
phi coefficients. Figure 4 presents results of analysea on the same
data seta using tetrachoric correlations. As the amount of random

error increased in the data, the magnitudes of the eigenvalues of the
first three principal components dedreased. Since the phi coefficients
tended to yield lower eigenvalues for the primary principal components
than the tetrachoric coefficients, result, the elbows in the graph
appeared less well-defined.
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Two additional things were found to affect the magnitude of

eigenvaluea corresponding to principal components regardless of whether
phi or tetrachoric correlations were analyzed. First of all, the
nagnitudes are affected by the heterogeneity of the correlations with
the latent trait in multidimensional sets. In data sets 10-12 and 19-
21, each item loads 'ly one of the k ( 2 or 3) factors in the
item set and the first k principal components are approximately equal.
In data sets 13-14 and 22-25, ma the k factor loadings become more

homogeneous, a aingle principal component tends to dominate the
eigenvalues. Secondly, the magnitudes of the principal components are
affected by the heterogeneity of the items. Data sets 16-18 are very
similar to data seta 13-15 except that all itema have the same factor
loadings on each factor. Whereas data sets 13-15 had a dominant factor
and a smaller second factor, data sets 16-18 had only one dominant
factor. These findings have two implicetions. First, the principal

components need not correspond to the original generating latent
traits. This has implications for interpretation of principal
components. Second, the dimensionality of an item is a function of the
set of items within which it occurs. This is an example of Be3ar's
(1983) statement that dimensionality, like reliability, is situation
specific. Clearly, this has important implications for test equating.

While data seta 13-15 appeared to have a single dominant factor
and a substantially smaller second factor (according to eigenvalue
analysis), many researchers would declare the set of items to be
unidimenaional. On the other hand, Si by dimension plots clearly

showed that these items were behaving in a similar fashion to data mete
10-12. It -ay be, than, that MDS, because it does not attempt to form
1inear combinations, is better at recognizing dimensionality. Si by

dimenaion plots for data sets 16-18, however, behaved like thoee for
unidimensional data sets. The reason for this will become clear in the
next section.

Examination of MDS Plots

items air_ located in the MDS representational apace according to
their similarity. The: items with the highest simi arity coefficients
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will be th- items with the most ilar factor load ngs. Aa a result,
items with similar facter loadings tend to cluster together. This
effect was apparent in all data seta regardless of the type of
similarity coefficient used. However, the morgin-sensitive

coefficients contained an extra dimendion due to difficulty which
pulled the clusters apart giving a linear appearance. The appearance
of the line varied with the type of margin-sensitive coefficient input
into the scaling algorithm. Since the scaling results are essentially
the r7ame except for differences in appearance caused by the difficulty
dimension, results will be discussed for the margin-free coefficients
first. Data seta 1-9 all yielded a single cluster or disk of items.
As the amount of random error increased, the disk tended to pull apart,
but it was still recognizable as a single structure. Data seta 7-9
contained itema with different factor loadings on the single factor.
Figure 5 presents results obtained for data set 8 for ft scaling of
Yule's 0 coefficients. Itea labeled 1, 2, end 3 correlated .9, .6,

and .3 with the latent trait, respectively. When the items in these
data sets were scaled, the items most closely related to the latent
trait appeared on the interior of the cluster in a small region. As
the relationship of the items to the latent trait weakened, the items
were moved away from the center of the cluster and spaced in concentric
circles aboUt the center. This suggests that the magnitude of the
factor loading controls the tightness of the clustering.

As the number of dimensions in the item set increased. the numb r
of clusters incressd. Data sets 10-15 yielded two clusters of items:
data sets 19-24 yieLded three clusters of items. Figure 6 shows
scaling results obtained for a matrix of tetrachoric coefficients
data set 19 which had factor loadings of .9 on one of three factors.
terms related to the first, second, or third factor are identified w th
1, 2, or 3. Three clusters are clearly visible here (although two

itema trail from the clusters).

As noted previously with the unidimensional data, the tichtn as of
the clusters decreased as the amount of random error in the data
increased. Examination of the item plots suggested why the one-
dimensional MD5 solutions for the margin-free coefficients had such
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high 51 value-. When two- and higher-dimensional data are sca:,ed,

differences among items due to random error are small compared to

differences due to associat on with d_fferent combinations of factors.

As a result, rank orderings of item distances are, likely to contain

fewer large differences in rank orderings resulting in a lower Si
value. When one-dimensional data are scale, differences among items
are caused only by random error. Rank orderings are random and result
in a high 51 value. For n objects, n-1 dimensiens are required to

account for the differences in a satisfactory manner.

When the correlations are low, there are substantial ameunta of
random error to account for, and, accordingly, these items are scaled
farther from the cluster center. For the multidimensional data sets,
the differentiation between the clusters tended to decrease as the
amount of random error increased. Thin is because the systematic error

component (the component which influencea the separation of the cluster

centers) becomes small relative to the random error component (the

component which influences the distance of the items from the cluster
centers). As a result, the less reliable items tend to overlap.

When the three-dimensional data were scaled, clusters were located
such that items with identical loadings (but on different factors, as

in data sets 19-21) were equally distant from each other. Whereas this
can be done on a line for two-factor data, an equilateral tritkngle i_

required for three-factor data and the representational space will be
required to have two dimensions. This suggests that a k-dimensional

latent space will require (k-1) dimensions in an MD5 space (unless a

difficulty dimension is required). The vertices of the triangle may be
considered to represent the simplest factors. For example, items 1-13
in data set 19 would form a cluster at one vertex, items 14-27 would

form another cluster at a second vertex, and the remaining items would

form the third cluster at the last vertex. The number of distinct

factor structures in the data controls the number of clusters. For
this reason, data sets 13-15 will form two clusters even though the
items are highly related to each other. However, their separation will
'Ile controlled by the relative strengths of their loadings on the 1 tent
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variables; the diffe -nt ati n of the clusters will be controlled by
the magnitudes of the loadings on the latent variables.

Data sets 27-29 provide an illustration of the above p int. T_o-
dimenaional MOS plots are presented for theae data in Figurea 7-9. In
data set 27, throe clusters are distinctly visible. Itema which are
related to the first factor (labeled 1) are located in a cluater on the
left of the diagram; items related to the second factor cluster
labeled 3) on the right. Items which are related to both fact ra
(labeled 2) are located between the two aingle-factor clusters. S _ce
they are equally related to both factors, they are spaced midway along
the line joining the centers oC. the two single-factor clusters. Items
1-13 and 28-40 are highly related to their respective factors and their
dispersal from the cluster center is small. The two latent factors
account for only 50* of the systematic variance in items 14-27 (as
opposed to alx in the remaining items), so the cluster appears more
diffuae. In data set 28, items 1-13 (labeled 1) were more heavily
related to the first factor than the second (.7, .3), items 14-28
(labeled 2) were related equally to both factors (.5, .5) and items 28-
40 (labeled 3) were more heavily related to the aecond factor than the
first (.3, .7). The results in Figure 8 show that, again, three
clusters were formed with the items equally related to both factors
located toward the center of the plot. However, the clusters on the
left and right sides of the plot were more spread out than in data set
27 where factor loadinga accounted for 81% of the variability. In data
set 28, the factors only account for 58* of the variability in the
first and third clusters. Differentiation among the clustera was
accordingly leas clear.

Data set 29 yielded the moat informative results. The plot
ob a_ned by scaling tetrachoric correlations for this data set :%s sho n
in Figure 9. Here there are seven diatinct factor structures, with
items loading on one, two, or three factors. Single factor items were
scaled in clusters according to their factor relationship (-.e., items
1-6, 7-12, and 13-18 were scaled in three separate clusters labeled 1,
2, or 3). These.clusters were equally spaced as in data sets 19-21.

The clusters containing homogeneous seta of items which loaded on two
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of the three factors 1 baled 4, 50 or .6) were located near a line

drawn between the two vertices of the triangle containing the factc;ra

to which the items were related. Thus, if a cluster contained items
related to factors 1 and 2, it was located between the cluster for

factor 1 and that for factor 2. The cluster was located closest t
cluster to which 1 t was most highly related. Therefore, a cluster

containing items generated from (.7, .3, .0) factor loadings was

located between the clusters geneTated by (.9, .0, .0) and ( .0, .9, .0)

factor loadings, but closer to the former than the latter. The cluster
containing items generated by (.5, .5, .5) factor loadings (labeled 7)
was located at the interior of the tri ngle. AS items take on a more

complex factor structure, they will be pulled away from a line or a

point toward other factors on which they load. This suggests that a
tetrahedron in three dimensions will be required to represent a four-

factor structure and that items will be located in the interior of the

tetrahedron if they relate to all four factors.

Theae findings have important implications for asses ent of
dimensionality in MDS. An examination oe the clustering in MDS plots
will help to isolate sets of homogeneous items. However, if the goal
of the MDS procedure is to determine the number oe latent dimensiona

present in the data, the magnitude and behavior of the 31 coefficient
must also be considered.

Plots for the margin-sensitive coefficients appeared quite

different because of tha presence of a dimension related to diffi u ty.

When unidimenaional item- seta were scaled using agreement, kappa, or

phi coefficients, items were arranged in a line with the moat difficult

items at .one end and the least difficult at the other. For the

agreement coefficient, the line was straight. However, for the kappa

and phi coefficiente, the line was in the shape of a horseshoe. An

example of the type of plot obtained is shown in Figure 10, which sh

the reaulta of scaling kappa coefficients in data set 1. Items are

ordered by difficulty with A the easiest item, progressing through the

alphabet to numbera and syMbols. Note that while two dimensions are

required to represent the graph aatisfactorily, a single curvilinear

dimension could be hypothesized for the data. The kappa coefeicient
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was apecifically suggested to deal with the problems of chance
agreement due to marginal distributions, so it should be less sensitive
to 1.tem difficulty than the agreement coefficient. However, both kappa
and phi have rangea which are restricted by differencea-in item
difficulties; hence, their values are still affected by item
difficulty. Thia is espec ally true at the extremes of the
distribution and may help to account for the curvilinear effect.

As the correlation of each item with the latent trait decreased,
the clarity of the plota tended to decrease. The phi coefficient was
somewhat more affected by this problem than kappa. As the random error
increased, items tended to vary from the line or horseshoe degrading
the clarity of the original shape. Plots uaing kappa coefficients
tended to take on curvilinear forms other than a horseshoe, while plots
using agreement coefficients tended to resemble a filled-in ellipse.
This increase in scatter about the "true" item location has already
been described for cluster-type plots.

Whan data contained two or more dimensions, plots using agreement
coefficients took on a circular or elliptical ahape. Figure .11

presents results for scaling a matrix of agreement coefficients for
data set 19. Items are labeled according to the factor on which they
load most highly, as can be seen, items are scaled in arcs about an
axis. Examination of the item difficulties showed that the axis was
related to item difficulty with easy items scaled at the one end and
difficult items at the other. Items which were of extreme difficulty
or easiness were closer together than items of moderate difficulty. It

appears that such items are more like each other because of their

difficulty or easinesa than because of any relationship to a factor.
However, since an ite;krelated to one factor must be aa distant from an
item of the same difficulty related to another factor as it is from any
other item of :the same difficulty.related to a third factor additional
dimensions will be needed to represent the distances in a satisfactory
manner. For three-dimensional item seta this structure was similar to
a football.

Plots for kappa and phi tended to resemble the plots for the
margin-free coefficients as more dimenalons were added to the data with
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ems ord r_d within the clusters ac_ rding to difficulty. In goner l,
kappa, phi, and Miamax tended to have plots which were most influenced
by random error in the data and to yield the most variable results.
For this reason, their use is not suggested. Results for Yule's Q and
the tetrachcric coefficients were very similar and either of the two
would yield good results. Except for occasional problems in values for
the tetrachoric correlation with a relationship to item difficulty when
the correlation with the latent trait was very high, either could be
used interchangeably. As previously noted, the agreement coefficient

ls suggested when examining data for unidimensionality, since only the
margin-sensitive coefficients were capable of indicating a one-
dimensional solution for such data.

Cluster_Ansl aem

The clusters present in the MDS plots suggested that =luste-

analysis might be appropriate for classifying items into homogeneous
sets. While Reckase (1981) did investigate cluster analysis as a
technique for identifying homogenecus item sets, he applied it directly
to the same similarity matrices used in the MDS. He found that many
items were misclassified even when the correct number of dimensions or
clusters) was used. Furthermore, he found that margin-sensitive

coefficients tended to group items of similar difficulty.

Although cluster analysis has a number of problems as a
classification technique, two are especially difficult for the
practitioner - susceptibility to local solutions (in some cases, due to
the presence of outliers) and lack of measures f r determining the
optimal number of clusters in the solution. However, since the results
were clearly clustered, the technique was applied to the coordinates of
the items in the MDS repres ntational space (rather than the similarity
matrices based on item data). It was hoped that the technique would

permit identification of homogeneous item groupings even if it did not
give information about the number of dimensions in the data. In
addition, using the MDS coordinates might reduce the sensitivity to
outliers. The first two cluster analysis procedures used were single
linkage and complete linkage options in the CLUSTER procedure in the
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SPSS-X statistical package (SP5S-X User's Guide, 986). Euclidean
distance measures were used with the data. It was hoped that one of
these procedures would be successful with the MDS results obtained from
the agreement matrices. However, neither of these tachniques proved
useful in classifying items into clusters. Classification appeared to
be random and these techniques were dropped. The scaling coordinates
obtained for matrices of tetrachoric coefficients for data sets 27-29
(two- and five-dimensional solutions) were input to the k-meens
clustering program BMDPKM (Dixon, 1985). This technique is more
effective with the spherical-type cluste-- obtained in the MDS analyses
and gives information on the within-cluster and between-cluster mean
squares for each variable (here, MDS dimensions) to permit assessment
of the relative importance of each variable in classifying the data.

In general? results of the k-means clustering were good. No cases
were misclassified when three clusters were specified for either two-
or five-coordinate MDS solutions in data set 27. When more clusters
were specified than were actually needed, the algorithm simply split
the larger center cluster into smaller ones. When fewer clusters were
specified than the correct number, the center cluster was split so that
half the items which loaded equally on both factors were assigned to
each of the single-factor clusters. Significance tests on the
importance of each variable to clas_fication revealed that only the
first diawansion was consistently useful in classifying items into
groups. As the number of clusters requested increased, additional
dimensions were required to separate the items into homogeneous groups,
but they were of substantially less importance to the classification
procedure.

More problems were encountered with cluster analyses in data set
28 which had less differentiation between the clusters. Initial
analyses of both two- and five-dimensional data misclassified about
one-third of the cases, primarily because clusters 2 and 3 were split
on a horizontal rather than vertical axis. However, when seed values
were specified which appeared to be near the cluster centers, no cases
were misclassified for the two-dimensional data and only one for the
five-dimensional data. A similar problem was encountered for the
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seven-clust-- -.olution for data set 29. Although all c Were
classified correctly when the two-dimensional scaling results were

input, the five-dimensional data gave poor results. However, after

seed values were specified, only two cases were misciassified. This

suggests strongly that the r-rinarcher should try multiple solutions

with different seed values, particularly in regions where clusters ere
suspected. If results are stable for a number of solutions and if the

solutions seem reasonable, then the cluater solution may be accepted.

These results also suggest that more dimenaions than necessary for the

NOS representational space should not be input into the clustering
procedure.

One additional problem encountered in the analyses was the lack of

a cr-terion for determining the optimal number of clusters. Since the
plotting reaults clearly suggested the correct number of clusters, the

problem was not difficult here. The C-index (Saber 1984) yielded poor .

results and failed to indicate the correct number of clusters. When

the statistic was modified to include only those variables which were

significant in the clustering, the results were very good. More

research needs to be undertaken to determine what, if any, indices of

clustering may be useful.

Cenclusia
As in the Reck (1981) study, MDS has been demonstrated to be a

useful technique in classifying items into homogeneous groups when the

sources of variability in the data are well-specified. While Reckase

was interested in the efXect of guessing on MOS results, this study has

focused on the effect-of the relationship of the item with the latent
variable. Although some differences have been found which may be due

to differences in scaling algorithms, results are in substantial

agreement. Recksse found that guessing tended to degrade the quality

of the item plots. In thia study, it was observed that as item

correlations with the latent trait decreased, items were more widely

dispersed about the cluster center. In both cases, the dispersion may

be attributed to increased random error in the data; for the Reckase

study, difficult items were most affected, whereas ln the present
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study, all items were affected regardless of thei- difficulty level.

Although Reckase had one data set which contained more factor

structures than factors (and which yielded as many clusters as

structures), for the most part, the two variables were confounded.
This study shows clearly that the number of clusters is related to the

number of distinct factor structures *n the data- The results of this
study suggest that-the number of factors in the data is related to the
number of dimensions in the representational space, but that factors

and dimensions must be distinguished in MDS.

Of the coefficients used, three (kappa, phi, and M/Omax) were
found to be particularly sensitive to random error and their use is not
suggested. OS those remaining, the agreement coefficient was found to
be useful in cases where unidimensionality is expected in the data.

While it is sensitive to item difficulty, this dimension was clear on
the item plots. The tetrachoric coefficient and Yule's 0 are

particularly useful when the goal of the analysis is to isolate

homogeneous sets of items since they tended to yield clustered results.

Because of the tendency of items to cluster together according to
the_r similarity, it is suggested that cluster analysis of the MDS

coordinates be conducted to isolste homogeneous seta of it ma. While
the tendency of the technique to yield solutions which are sensitive
local problems should not be overlooked, some of the problems may be
rectified by using seed values for cluster centers. This has the
advantage of permitting the researcher some control over the solution.
Because misclassifications tended to occur when MDS representational

spaces had too many dimensions, it is suggesited that no more then the

necessary number of dimensions be used for the analyses. lf two-

dimensional MDS results are adequate to determine the structure of the
data then no more than two dimensions should be used.

These results deal only with simulated data. Further research
should be carried out to determine whether these results are
appropriate for actual teat data. In addition, research needs ro be
carried out to determine whether any of the measures of clustering is
useful in determining the optimal number of clusters in this situation.

25

28



erences

Bejar, I. I. (1983). Introduction to item response models and their
assumptions. In R. K. Hambleton, ed., Apn_lications of_Item
Response Theory, Vancouver, BC: Educational Research Institute of
British Columbia.

Birnbaum, A. (1968). Some latent trait models and their use in
inferring an examinee's ability. In F. M. Lord and M. R. Novick,
Statistical Theories of Mental Test _Scores, Reading, MA: Addison-
Wesley.

Bock, R.D. and Aitkin, N. (1981). Marginal maximum likelihood
estimation of item parameters: application of an EM algorithm.
Psvchometrika, 46, 443-459.

Bock, R. D., Gibbons, R. D. and Muraki, E. 985). Full information
factor analysis (MRC Report No. 85-1). Chicago, IL: National
Opinion Research Center.

Carroll, J. B. (1945). The effect of difficulty and chance success on
correlations between it -a or between testa. EgxehgaglAim, la,
1-19.

Castellan, Jr., N. J. (1966). On the estimation of the ttrecho
correlation coefficient. Psvchometrika, 31, 67-73.

Divgi, D. R. (1979). Calculation of the tetrachoric correl t on
coefficient. Ps chometrika, 44, 169-172.

Dixon, W. 3. (1985). BMDP Statistical Software. Berkeley, CA:
University of California Press.

Gnanadesikan, R. (1977). Methods_for statistical data analysis of_
multivariate_observationa. New York: John Wiley and Sons.

Guttman, L. (1965),. The structure of interrelations among
intelligence:tests. In Proceedings of_the_1964 Invitational
Conference on Testing Problems. Princeton, N.J., Educational
Testing Services, 25-36.

Gutt L. (1968). A general nonmetric technique for finding the
smallest coordinate space for a configuration of points.
Psychometrika, 33, 469-506.

Kirk, D. B. (1973). On the num ric approximation of the bivariate
normal tetrachoric) correlation coefficient. Etay_gholr,
259-26

26

2 9



Koch, W. (196_ ). The analysis of d chotomous test data using
nonmetric multidimensional scaling. Paper preaented at the Annual
Meeting- of the American Educational Research Association,
Montreal, Canada. (ERIC Document Reproduction Service No. ED 235
204).

Korpi M. and Haertel, E. (1984). Locating reading comprehension te t
items in multidimensional space: An alternative analysis of test
structure. Paper presented at the Annual Meeting of the American
Educational Research Association, New Orleans, LA. (ERIC Document
Reproduction Service No. ED 246 108).

Kruskal, J. B. (1964). Nonmetric multidimensional scaling:
numerical method. Ps chometrika, 29, 115-129.

Krus -1, J. B. and Wish, M. (1978). Multidimensional Scaling. Sage
University Paper series on Quantitative Applications in the Social
Sciences, 07-011.

Lord, F. M. (1980). Abolications_ oi _Item_Re
Testing_Problems. Hillsdale, NJ: Lairence Erlbsum Associa

The

Lord, F. M. and Novick, M. R. (1968). Statisti--1 The,ries of Mental
Test-Scores. Reading, MA: Addison-Wesley.

McDonald, R. P. and Ahlawat, K. S. (1974). Difficulty factors in
binary data. British Journal of Aathemstical_and_Statistical
Pavchologv, 27, 82-99.

McK nley, R. L. and Reckase M. D. (1962a). MAXLOG: A computer
program for the estimation of the parameters of a multidimensional
logistic model. Behavior Research Methods and Instrumentation,
15, 389-390.

McKinley, R. L. and R ckaae, M. D. (1962b). Multidimensional latent
trait models. Paper presented at the National Council on
Maaaurement in Education, New York. (Eric Document Reproduction
Service No. ED 220 506).

nley, R. L. and R ckase, M. D. (19 3). The analysis of
dichotomous test data using multidimensional latent trait theory.
Paper presented at the Annual Meeting of the American Educational
Research Association, Montreal, Canada.

27



levy, R. 3.
categoric 1 variables. Journal of Educational Statistics, 11, 3-
32.

1986). Recent developments in the factor analysis of

Muthén, B. (1978). Contributions to factor analysis of dichotomous
variables. Psvchometrika, 43, 551-560.

Rec ase, M. D. (1981). The formation of homogeneous item se a when
guessing is a factor in item responses. Office of Naval Research
Report 81-5.

Seber, G. A. F. 1984). Nultivariate Ob ervat -na. New York: John
Wiley and Sons.

SPSS (1986) SPSS-X User's Guide. Chica--: IL: SPSS, Inc.

Thomas, J- A. <1984 A comparison of factor analysis and
multidimensional scaling in determining underlying structure.
Pap*r presented at the Annual Meeting of the American Educational
Research Association, New-Orleans, L.A. (ERIC Document
Reproduction Service No. ED 244 994).

Wilkinson, L. 1984). SYSTAT: the- Svs
IL: Systat, Inc.

Statistics. Evanston,

Zwick, R. (1986). Assessing the dimensionality of dichotomous item
responses: Theoretical and empirical perspectives. Paper
presented at the Annual Meeting of the American Educational
Research Association, San Francisco, CA.

28



Table 1. Characteristics of One-, Two-, and Three-
Dimensional Data Sets.

Data Set
Number

1.

2

3

4

5

7

'3

10

Factor Loading Item Difficulty
1 2 3

.9

.6

.6

.3

. 6

.3

. 9

.6

. 3

an,a

Distribution
Number of

Item

Normal 40

Normal 40

Normal 40

Rectangular 40

Rectangular 40

Rectangular 40

Normal la
14
13

13
14
13

Normal 40

Norm 1 20
.0 .9 20

11 .5 .0
.0 .5

12

13

14

17

.3

. 9 .2

20
20

20
20

20
.2 .9 20

.7 Normal 20
20

Normal 20
. 4 .6 20

. 6 .3

Normal 40

Normal 40

uniformly dIstributed factor loadings (.3 thr ugh .9)
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Table 1.
Data Set

(ontinued)
Factor Loading Item DiffiCtilty Number _1

Number 1 2 3 Distributibn Itezna

18 .6 Normal 40

19 .9 .o Normal 13
.0 .9 .o 14
.0 .9 13

20 .5 .0 .0 Normal 13
.0 .5 .0 14
.0 .0 .5 13

21 .0 .0 No 13
_ .3 .0 14

.0 .0 .3 13

22 .9 .2 .2 Normal 13
.2 .9 .2 14
.2 .2 .9 13

23 .6 .2 .0 Normal 13
.0 .9 .2 14
.2 .0 .8 13

24 .5 .3 .1 Normal 13
.1 .5 .3 14
.3 .1 .5 13

25 .5 .3 .1 Normal 13
.4 .2 .0 14
.3 .0 .1 13

26 .5 .5 .2 Normal 20
.5 .2 .5 20

27 .9 .0 - Normal 13
.5 .5 - 14
.0 .9 13

28 .7 Normal 13
.5 .5 14
.3 .7 13

29 .9 .0 .0 Normal 6
.0 .9 .0 6
.0 o . 9 6
.7 .5 .0 6
.0 .7 .5 6
.5 .0 .7 6
5 .5 .5 4
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Captions for Figures

Figure 1
19-21
---

Figure 2. Si by dimensi n plot for three-dim
19-21 (tetrachoric coefficient).

Si by dimension plot for three-di.menai,na1 data sets
--nt coefficient).

al data sets

Figure 3. Eigenvalue magnitude for principal components
analysis of data seta 19-21 (phi coefficients).

Figure 4. Eigenvalue magnitude for principal compone
analysis of data sets 19-21 (tetrachoric coefficients

Figure 5. MDS results cor one-dimensi nal data set (
items .9, 14 items .6, 13 items .3 (Yule's C).

Figure 6. MDS Results for three-dimensional data set (19) 15
items (.9, 0, 0), 14 items (0, .9, 0), 13 items (0, 0, .9)
(tetrachoric coefficient).

Figure 7. MDS Results for _-o-dimensional data set (27). 13
items (.9, 0), 14 items (.5, .5), 13 items (0, .9) tetrachoric
coefficient).

Figure 8. MDS Results for two-dimensional data set (28).
Items (.7, .5), 14 items (.5, .5), 13 items (.3, .7)
tetrachoric coefficient).

Figure 9. MDS results for three-dimensional data set (29).
Mixed factor loadings (tetrachoric coefficient).

Figure 10. MDS results for one-dimensional data set, normally
distributed item difficulty (kappa coefficient).

Figure 11. MDS results for three-dimensio -1 data set (19)
(agreement coefficient).
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